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PART 1

This article of the series deals with the evaporation
which takes place after a rain stops, and its effect on
stream flow.

Throughout, as in the first two papers, the rate of rain-
fall, the condition of the soil, and the velocity of the water
are considered to be constant.

In the first section of Part II, equations are given which
show the effect of evaporation on run-off. (As previously
explained, for sufficiently small drainage areas the volume
of rate of run-off can be regarded as synonymous with the
discharge.) In the second section, equations are devel-
oped which give the discharge from a rectangle when the
effect of evaporation is considered; in this section the rate
of evaporation (or evaporativity) is treated as constant.
In the third section, equations are developed which give
the discharge from a drainage area of any shape, such as
discussed in section 4 of the second paper, and where the
rate of evaporation (or evaporativity) is any function of
time. In the fourth section the diurnal variation of rate
of run-off is discussed. In the fifth and last section a few
hypothetical hydrographs are computed from which one
can judge of the magnitude of the effect of evaporation
on the discharge.

- A few definitions will here be given and explained.
First of all it is essential when speaking of “rainfall” or
“run-off’ or “evaporation’’ to keep clearly in mind exactly
what is meant. Each of these three terms could be inter-
greted as representing a depth of water. Again each could

e interpreted as representing a volume of water, by mul-
tiplying the depth by the area of a parcel of ground. FEach
of these terms could also be interpreted as representing a
change in depth per unit time; in this sense, each term
represents the first derivative of a depth with respect to
time. Again each term could be interpreted as repre-
senting a change in volume per unit time; in this sense the
term represents the first derivative of a wvolume with
respect to time. Thus all told, four separate and distinct
interpretations can be placed on each of the terms ‘rain-
fall”’, “run-off”’, and ‘‘evaporation’’. It is imperative to
distinguish clearly between these meanings; and for this
reason the practice of prefixing the words “rate of”,
‘“volume of’’, or ‘“volume of rate of’’ to the basic word,
as was done in the first paper in connection with “rainfall”
and “run-off”’, will be followed here for “evaporation.”

The volume of water (not of water vapor) which is
evaporated from a given area in a given interval of time
is here denoted the volume of evaporation. Like volume
of rainfall, volume of evaporation will be measured in
mile-inches. It should be clearly understood that the
volume of evaporation as here defined includes both the
water evaporated from the ground, whether directly or
through plants, and also the water evaporated from any
free water surfaces which the drainage area in question
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may contain as lakes, ponds, and streams draining the
area. Naturally for some studies it is necessary to dis-
tinguish between evaporation directly from the ground,
evaporation through plants, etc., but it is not believed
that these distinctions are necessary to forecast flood
crests accurately.

The volume of water which is evaporated per unit time
from a given area at any given time is designated the
volume of rate of evaporation.

The volume of rate of evaporation is volume per unit
time and therefore will be measured in mile-inches per
hour. Mathematically, the volume of rate of evaporation
is the first derivative of volume of evaporation with respect
to time.

The volume of water which is evaporated from a given
region in a given interval of time per unit area is here
called the evaporation. Evaporation is volume divided by
area, i. e., it is a length, and will be measured in inches.
The volume of water which is being evaporated per unit
time, from a given region at any given time, per unit area,
is the rate of evaporation. The rate of evaporation is
volume per unit time divided by area, i. e., length per unit
time, and will therefore be measured in inches per hour.
Mathematically the rate of evaporation is the first deriva-
tive of evaporation with respect to time.

It is well known that, other things being equal, the rate
of evaporation is greater when there is a strong wind than
when there is no wind; likewise, the rate of evaporation is
greater when the air is warm than when the air is cold;
greater when the sun is shining than when the sky is over-
cast; and greater when the relative humidity is low than
when it is high. Recognizing these facts, consider the
following two situations: First, a piece of ground during
one year under specified conditions of culture, tempera-
ture, wind, etc., shortly after a heavy rain of long dura-
tion; and second, the same piece of ground during another
year at the same specified conditions of culture, tempera-
ture, wind and alf) other pertinent things with this one
difference: A long dry spell has been in progress. Clearly,
the rate of evaporation will be greater in the first case than
in the second. We can therefore say that the rate of
evaporation may be dependent upon the amount of water
remaining with the soil. That the rate of evaporation is
not always dependent upon the amount of water remaining
with the soil can be made clear by considering a slough.
As long as there is water in the slough the rate of evapora-
tion will be solely dependent on the wind, temperature and
other weather elements and not upon the amount of water
in the slough.

Undoubtedly experiments are necessary to determine
just when the rate of evaporation becomes dependent upon
the amount of water remaining with the soil; but it would
seem that when soil is water-logged, as it may be occa~
sionally, the rate of evaporation would not be so dependent.
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- To take account of the fact that the rate of evaporation
may be dependent upon the amount of water remaining
with #the soil, it is necessary to introduce two additional
terms: The volume of water which would be evaporated
from a given region, were an unlimited supply of water
available in & given interval of time per unit area is here
called the evaporativity. The volume of water which
would be evaporated per unit time from a given region
were an unlimited supply of water available at any given
time per unit area is designated the rate of evaporativity.
Mathematically, the rate of evaporativity is the first
derivative of evaporativity with respect to time. KEvap-
orativity is measured in the same units as evaporation;
and rate of evaporativity is measured in the same units as
rate of evaporation.

The use here of the term evaporativity, as distinguished
from the term evaporation, agrees with the recommenda-
tions of a committee of the Section of Hydrology of the
American Geophysical Union.!

The distinction between evaporation and evaporativity
can be explained in a different way: By multiplying the
depth of rainfall by the area of a drainage area the volume
of rainfall can be computed; if the depth of rainfall varies
from place to place within the drainage area, the volume
of rainfall should be computed by an integration process.
In a similar way the volume of discharge on the stream
which drains the region can be computed. If the time of
beginning and the time of ending of the time interval be
so chosen that the amount of water remaining with the
soil is the same at the end as at the beginning, and the
volume of discharge is equal to the volume of run-off,
then substracting the volume of discharge from the volume
of rainfall we obtain a remainder which represents the
volume of evaporation and is the actual amount of water
which was lost from the drainage area during the given
interval by evaporation processes. Now suppose a num-
ber of evaporation pans be located in this drainage area,
and the depth of water lost from each pan to the air by
evaporation in this interval of time be measured and
recorded. Then by an appropriate integration process (or
simple multiplication if no variation is observed from pan
to pan within the region) the total volume of water that
would be lost to the air over the region in the interval
were an unlimited supply of water kept available could be
computed. Itisevident that for most regions of the earth’s
land surface the volume of evaporation computed from
evaporation pan observations would exceed the volume
of water obtained by subtracting the volume of run-off
from the volume of rainfall. In keeping with the defini-
tions just given, we say that in general observstions
obtained from evaporation pans represent evaporativity
and very seldom represent evaporation.

All the terms defined in the first three articles, together
wilth the units in which they are expressed, are tabulated
below.

Throughout the first three sections of the present
article, evaporation has been approached from two differ-
ent points of view, viz. (1) that evaporation is independent
of tEe amount of water remaining with the soil; and (2)
that it is so dependent. Thus there are two sets of equa-
tions: One set applying to the first condition; the other to
the second. Both sets have been derived for the sake of
completeness. It would seem that in the eastern part of
the United States the soil seldom becomes water-logged
except in winter and early spring, and at these times of
the year the rate of evaporation is very low anyway and
probably could safely be neglected. The soil is not likely
to become waterJogged at other times of the year even

1 These terms appear on p. 403 of Transactions of the American Geophysical Unlon (1935).
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though the most intense rains do oecur in summar.
Hence, when it is necessary to consider evaporation, it
would seem that only the equations derived on- the second
assumption above would be required. Further comments
on this question will be made when the theory here
developed is applied to actual observations.

TERMS RELATED TO RUN-OFF

Units in which

“Term Symbols expressed
t
Run-off. ... J‘n 2l . Inches.
Rateofrun-off ... _..____.._ 2P Inches per hour.
&
Volume of run-off._ __...___. Azdtor S S S ededwdt ... Mile-inches.

Miles-inches per hour.

Rainfall.__ .. ... Rt Inches.
Rate of rainfall______________ %=r ........................... Inches per hour.
Volume of rainfall._.___...__ ARor ff frdxdwdt_ . ... _. Mile-inches.

Mile-inches per hour.

TERMS RELATED TO EVAPORATION

Evaporation_ . ._....__..._.. . Edt. oo Inches.

Rate of evaporation_..______| B________ .. Inches per hour.
]

Velume of evaporation. . r‘AEdt or £ S SEdrdwt......_| Mile-inches.

Volume of rate of evapora- | AEor S S Edrdw. ... Mile-inches per hour.

tion.
Inches.
Inches per hour.

Fvaporativity
Rate of evaporativity . _.____ & e e

TERMS RELATED TO DISCHARGE

Mile-inches.
.| Mile-inches per hour,
-} Mi. in. hr

Mi. in. hr-?

Volume of discharge

Discharge_. ...
Rate of discharge
Discharge tendency

The various assumptions which are made from time to
time throughout this series of articles are of two very
different kinds: First are the special assumptions, of which
may be mentioned the assumptions that the drainage area
is rectangular, the rate of rainfall is constant, the velocity
of the water is constant, etc. These special assumptions
will one by one be removed; they are made in order to
have the early theoretical treatment tractable. Second
are the fundamental assumptions. The first fundamental
assumption, made in the first paper, is that the rate of
run-off from a parcel of ground at any given time is
directly proportional to the amount of water remaining
with the soil at that time. No fundamental assumptions
were made in the second paper. In this third paper a
second and a third assumption are made: The second is:
When the soil is not water-logged, the evaporation at any
given instant is directly proportional to the product of
thie amount of water remalining with the soil by the evap-
orativity at that instant. The third is: When transpira-
tion is constant, the rate of run-off at any given time is
directly proportional to the amount of water remaining
with the soil at that time; when the latter is constant, the
rate of run-off at any given time is inversely proportional
to the transpiration. :

These fundamental assumptions are believed to be
plausible, and to be close approximations to, if not pre-
cisely, what occurs in nature. They have been made
not in order to have the mathematical treatment tractable
but because no exact observations of these phenomena
are available.
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It will be pointed out in the fourth section of this paper
that although the third fundamental assumption must be
considered when dealing with the rate of run-off, it can
safely be disregarded when dealing with stream flow from
a drainage area of appreciable size.

In regard to the question of evaporation and its effect
on stream flow, despite the fact that for the eastern part
of the United States only about one-fourth of the mean
annual rainfall runs off while approximately three-fourths
evaporates; nevertheless, in a rain of sufficient heaviness
and intensity to cause a flood the part which evaporates
before the time of a flood crest is relatively small and
usually has a negligible effect on the height of the flood
crest. The hydrographs in the fifth section clearly show

this.
PART 11
SECTION l: RUN-OFF CORRECTED FOR EVAPORATION

The symbols in this paper have the same meanings
given them in the preceding papers with this exception:
¢ (¢) henceforth represents depth of water remaining with
the soil (not the volume as stated on page 318 of the first
paper).

Equation (2) of paper I will now be generalized.

A first generalization will be developed on the assump-
tion that the amount of water remaining with the soil is
sufficiently great for the rate of evaporation to be inde-
pendent thereof. The rate of evaporation is a function
of the wind, temperature, relative humidity, and possibly
other things also, but for the present purpose the rate of
evaporation can be regarded simply as a function of time.
As evaporation may be considered to begin at the instant
the rain stops, that is, when ¢={, (or when ¢’'=t—12,=0)
let this function be E (#'). After the rain stops, the vol-
ume of water remaining with the soil at any given time is
equal to the volume which fell as rain less the volume which
ran off while it was raining, less the volume which has run
off during the interval since the rain stopped, less the
volume which has evaporated during this same interval.
Expressed in symbols:

Ag(t) = fo “ Ardi— ﬁ " Acdt— ﬁ ' Azdi— ﬁ ' AE(#)dt.

In accordance with the first fundamental assumption,
¢ (1) can be replaced by ¢z, and on doing this and differ-
entiating we get

cAdz=—Azdt— AE(t')dt.
Clearly dt = dt’; and dividing by cAdt’ and transposing,

dz | 1 1.,

a linear differential equation of the first order.!
The integrating factor is

dt’ v

el c=¢c,

hence
'de 1 L 1 v
ec E‘F—i‘ze‘ 2= —EE(t')GC ’

L vl 4
[zec] :f —=E(t")e: dt.
0 0 c

t It may be noted that both equations (1) and (2) in the first paper could have heen
derlved by making use of some of the elementary theory of differential equations, instead
of the more elementary processes actually used.

and
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Now z = z,when ¢’ = 0, that is, at the time the rain stops;
hence, evaluat'ing the left member, transposing and mul-

¢
tiplying by ¢” ¢, we have finally:

- S W A
z=—ec [Zo——f Et)e dt’].
cJo

Equation (C-2) is the first generalized form of equation (2).
It should be noted that when E(t’) =0 then equation (C-2)
reduces to equation (2) as it should.

A second generalized form of equation (2) will next be
derived. Suppose that at the time the rain stops the
amount of water remaining with the soil is not sufficiently
great for the rate of evaporation to be independent thereof.
In this case the rate of evaporativity can be regarded as a
function of time. Let this function be &('). Let ¢(’)
be the depth of water remaining with the soil at time #';
then in aceordance with the second fundamental assump-
tion, the evaporation at time # is given by x{E({t’)}=
¢(t’) &(@’), where « is a constant of proportionality. On
substituting this value of E(t’) in the linear differential
equation given above, we get

(C-2)

dz | 1 1. e
(Yt—’+~c—°=_c_x¢(t )E(t').

As before, in accordance with the first fundamental
assumption ¢(t’) can be replaced by ¢z; then we have

dz 1 1 ,
W-l—;z_—;.;ﬁ(t ).
Clearly, this ecan be written in the form

Zo—(G+isw) )ar;

2

and by integrating

’

log z=—%—le8(t’)dt’-|—const.

Then from the definition of a logarithm and the fact that
z=2, when t’=0, we have finally
[

t
——-| &@hat
Z=208 ¢ *fO

(C-2f)
Equation (C-2f) is the second generalized form of equa-
tion (2). When & (') =0 then equation (C—2f) reduces to
equation (2) as it should. It is important to bear in mind
that equation (C-2f) was derived on the assumption that
the amount of water remaining with the soil at the time
the rain stops is not great enough for the rate of evapora-
tion to be independent thereof.

As already explained, ¢ is a time constant and is meas-
ured in hours. The constant « is a depth (length) con-
stant and is measured in inches. It represents the depth
of water which is just sufficient to saturate the soil enough
to make the rate of evaporation independent of the amount
of water remaining with the soil. This depth,? necessary
to produce just this degree of saturation, varies with the
condition of the soil at the beginning of the rain. If a
rain is so gentle that all the water soaks into the soil (that
is, there 18 no surface run-off), and also lasts just long
enough to bring about this degree of soil saturation, then
k is equal to cz,. , :

1 It should be emphasized that stream flow can be considered as arising from three causes,
namely: (1) Surface run-off from the last rain in the river basin; (2) ground water run-off
from this last rain; (3) ground water run-off frorn antecedent rains; and in all the state-
ments here being made about the constants ¢ and « the stream flow due to the third cause

isignored. In other words, « represents the depth as stated only insofar as the stream flow
from a single rain is being represented.
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From the above it is evident that « can be regarded as
known; and it is known at the beginning of the rain. If
the rain is so heavy and so long that after the rain stops
equation (C—2) applies, then this equation should be used
only for a limited range. The variable 2 in equation (C-2)

should be replaced by the constant :—: and the resulting

equation solved for ¢; let this value of ¢ be {£. Then ¢
represents the time at which the amount of water with
the soil is such that thereafter the rate of evaporation is
dependent on the amount which remains. Tt is evident
then that _equation (C-2) applies on the range 0=t <t
(or ty=<t<t-+1) and equation (C-2f) applies on the range
ISt'S o (or t+4,St< «). If the rain is such that
when the rain stops, the evaporation is dependent on the
amount of water remaining with the soil, then equation
(C-2f) applies on the range 0=Zt' < =,

In the é)rst paper the discharge equations were verified
by integrating them between the limits of the respective
ranges over which they apply, and ascertaining that the
sum of the integrals thus obtained is equal to the volume
of rainfall which occurs over the drainage area. The
same principle will now be used to verify the run-off
equations just obtained by showing that the rainfall is
equal to the sum of the run-off and the evaporation.
First, suppose the amount of water remaining with the
soil at the time the rain stops is small enough for the
evaporation to be dependent on this amount. The depth
of water remaining with the soil at the time the rain

stops is
¢(t0)=f'°rdt— f tor(l—e_%>dt
0 0
_t
=rc(1—e ‘)-

The sum of the run-off and the evaporation is
© ® @® D W il PP
ﬁ cdt+ ﬁ Bt d = ﬁ NG
+ ] Lewre@rar
=f"20<1+gs(t')>g—§—{fg EW gy —
0

vl » t
=3 ), swur -7
czo[——e ¢ xJe ] ——-czo——rc<1—e C),
0

which is equal to the depth remaining with the soil at the

time the rain stops.
to

Suppose now that rc(l—e_?) is so great that for a
while the rate of evaporation is independent of this
depth. In this case equation (C-2) is integrated between

the limits 0 and §. The evaporation plus the runoff from
the time the rain stops to the time ¢ is

T T Y 17 v _
fo E)d + ﬁ e =|:z‘,—E ﬁ E(t’)e‘dt’]dt’:
7 7 _¢ o O\ e
L E)dt + 2 ﬁ e edt + ﬁ (—Ee X ﬁ E(t’)e“dt')dt’=
3 _1 _t oy v v it
f E(t’)dt’—}—czo(l——e ‘>+|:ec fo E(t')e ¢ dt'— fo E(t’)dt':L

_I\  _ipi 4
=czo(1—e ‘)—l—e °J;E'(t’)e°dt'.
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The depth remaining at time ¢ is therefore

t it (4 v
cze ¢ —e ¢ | E({Necdl
0

and from the definition of 7 this must equal x. The

evaporation plus the runoff from the time t till all water
has disappeared from the soil is

® @ ® BN Y Y
f; zdt’+ﬁ E(t’)dt'=xﬁ (1+§s(t'>)e At HEIC T

=« as it should.

SECTION 2: DISCHARGE FROM RECTANGLE CORRECTED FOR
EVAPORATION

Equations will now be obtained for a rectangular drain-
age area, under the assumption that the amount of water
remaining with the soil at the time the rain stops is not
great enough to make the evaporation independent
thereof. It is further assumed in this simple case that
the rate of evaporativity is constant. :

Undoubtedly there is a small amount of evaporation
while the rain is in progress, but it is here assumed to be
negligible, and for this reason no modification is necessary
in equations (3) and (4). Equation (5) applies on the

range t°+'z7 Zt= o,and it follows by reasoning similar to

that given in the first paper that on this range the dis-
charge is obtained by integrating the volume of rate of
runofl over the entire drainage area. Making use of
equation (C-2f) the volume of rate of runoff %rom the
infinitesimal strip, Wdzx, at distance z above the gaging
station is given by .

Wadr=Wze (eD)e—e (t’_;) dz

1,86 , T
=Wae (+5) (D) dz
On integrating Wzdx between the limits 0 and L we get

yo a2 () (1) _ ()]

—ty
Since zp=r 1—e ¢ )and t'=t—t, we have finally

=t (A8 (11— 5y —(118) -
'.'/=1Vrcv(1—e ¢ K—»—ﬁ_xcg[e <¢+‘) (=0 ")e (e ")(‘ m]
This is equation (26). When &=0 equation (26) reduces
to equation (5) as it should.
If to>§ then for the range f,<t< to—l—vé equation (6) re-

quires modification. It follows by reasoning similar to
that of the first paper, and that used in obtaining equation
(26), that on this range the discharge is

v [ [ 1= D o [T €D D

On performing the integration indicated, recalling that
xp=(t—1,)v, and simplifying, we get finally

v=] Wr L—-wotae 0 D)]
+¥] (1 xfcs{l"“—(%+%)('_'°>}] 27)
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When §=0 equation (27) reduces to equation (6) as it
should. * -

If to<”£, equation (9) requires modification for the range

tp_:S___té%-' By reasoning similar to that just used, as well

as from the explanations in the first paper, it follows that
on this range the discharge is given by

y= _Wn[to—l}—_c(l *"—%XK gt 8{1 ~e D) <t—t»>l—1) , (28)

and this equation reduces to equation (9) when &=0.

- As previously explained, the derivatives, with respect
to ¢, of equations (3) and (4) are everywhere positive.
It follows readily that the derivative of equation (28) is
everywhere positive, and that for equation (26) is every-
where negative. Hence whether #,=L/v the time of the
flood crest is obtained by equating the derivative of equa-
tion (27) with respect to time to zero and solving. If ¢,
represent the time of the crest, the equation obtained by
equating the derivative of equation (27) to zero cannot
be solved explicitly for ¢,, However, in the case of y,
the maximum discharge, we can resort to the device,
which was used several timest in the second paper, of

multiplying equation (27) by ¢, differentiating the equa-
tion thus obtained, setting dy/dt=:0 and finally multiplying
1
by ce °.
Or doing this we have

Ye= W{L—— (t.— to)v-{—cv(l —e_?)

s 52 G ) o J e

When =0 equation (29) reduces to equation (8) as it
should.

We are now ready to consider the case when the amount
of water remaining with the soil at the time the rain stops
is so great that the rate of evaporation is independent
thereof. Here we further assume that the rate of evapora-
tion, from the time the rain stops to the time the amount
of water remaining with the soil is small enough to make
the rate of evaporation dependent thereon, is constant.

If E is constant, as we are_now asstgming, equation
(C—2) takes the form z=e °[20—E(e° —1)], and the
contribution to the discharge from the infinitesimal strip

1(p 2

Wdz at distance ¢ above the gaging station is W[zoe e\
_l(g'_f) L

—}—E(e AN —1) de. If t°<—v’ then on the range

Hh< tg% equation (9) requires modification; and on this

range the discharge is given by
o [ 1D T
[ D (D ) e

_t b
= n[t0+ce ‘(l—e ‘)]
1
- WEb[t- b +a(e_7(‘"“-) — 1)]

(30)
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Equation (30) holds on the range #,<{< L/v with the
further restriction that z>%. When =0, equation (30)
reduces to equation (9).

If %é i< to-i—% and ¢>1,, equation (6) must be changed.

For this range (with the additional restriction that z>«/e
of course) the discharge is given by

t L 1o
y=Wn L— (t—to)v-{—cv{l —l—e_7<1 —ea'—a_")]]

1
— I-VEi[t— to—i—e(e_?(t—w — 1)].

which reduces to equation (6) when E=0.
If tﬁ%gté o, with the additional restriction that

31

z>i of course, the discharge is given by
t[ 1(L Lt
y=Wreve °| e ("_Ho) —e¥— e‘—o—l— l:l

1 L
—WE I:L—l- cve_E(t_t°)< 1— ga),

which reduces to équation (5) when E=0.

Suppose that z=% at time ¢=2,-{, and suppose further

(32)

t0+igto+§; then on the range f,+{2t= « the discharge
is given by

LY RYPIEAYE
y:ﬁf_t_) W[zoe-’;(l—”)-l-E(e °(t ”) 1):ld:z:
[ D D
o :

On performing the integration and simplifying we finally
get

1 i 1 1.
, —Z(—t—L _t —(—~Liv) —= (o)
1/=H'rcv<e T i te ')

1 1 -
+ WEcv( g eI e-i>— WE(L—{t— fo— t}v)

C(48); - (48 s
+ W= +"cg(e @i _ D) ”)- (33)
Equation (33) holds on the range t_§t’§f+%- When

t=1-+t, equation (33) reduces to the form
y=W. Ecve—t/c< el 1>— WEL-

1~ 1/L Lieo tfc
4 Wreve —5(t+t°)<e°(_" +) e —e -H) « (33a)

When £ is set equal to ¢-+f, in equation (32), the latter
takes the form of equation (33a) also, as would be ex-

pected. When t=1-t+ L/v equation (33) reduces to the
form

8\t =
vtz (GO -2 ™) @

Equation (26) involves the factor zo=r(1_e- é‘) If this
factor be replaced by /c then equation (26) reduces to the
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form of equation (33b) when ¢{=t-+{,+L/v. This fact re-
quires some explanation. If, at the beginning of a rain,
x be the depth of water (in inches) required to produce
just enough saturation of the soil for the rate of evapora-
tion to be independent of the water which remains, and if
this rain fell and saturated the soil instantaneously, then
x=R, the depth of the rain. However, in nature there
will never be such instantaneous rains; and the depth of
rain required to produce this saturation of the soil is

t°r(1 —e~ %) df less than rt,; that is to say, the depth of

0
rainfall, ri,, must be diminished by the run-off while the
rain is I progress, and « is then equal to r¢ (1—e %), or
in other words x=z,c provided t, does not exceed the time
required to produce exactly this degree of saturation.
Clearly, in general, ¢, will either be less than or greater
than this time. If ¢, is less than this time, the rate of
evaporation is dependent on the amount which remains
and therefore one of the equations (26), (27) or (28) ap-
plies. Each of these three equations involves the factor
zo=r (1—e~"°). If, however,t, exceeds the time necessary
for xinches of rainfall to accumulate and remain with the
soil, then equations (26), (27) and (28) are not at once
applicable but instead one of equations (30), (31) or (32)
applies; equation (32) does not in this case apply on the

range t0+5§ t< =, because eventually the water remain-

ing with the soil will diminish to a value that will make the
rate of evaporation dependent on this amount. Of course
equation (32) would apply on this range if the soil were
impervious and no rain soaked info the soil, because as
long as there were free water above an impervious soil the
supply of water available insofar as the effect on the rate
of evaporation is concerned could be regarded as unlimited.
When the water remains with the soil long enough after the
rain has stopped for the rate of evaporation to become
dependent thereon an equation of the form of (26) applies;
but in this case we cannot use the factor z,=r(l—e %),
because t, exceeds the time required for z, to become just
equal to x/c. Now ¢ represents the time, after the rain
stops, at which the water remaining with the soil has re-
ceded to a value such that the rate of evaporation will
thereafter be dependent on the amount of water which
remains. Hence when ¢, exceeds the value for x to be
equal to r¢ (1—e"'°), and if ¢>>L/v, then equation (32)
applies on the range #+L/v<t<t,1t, equation (33) on
the range f,+t<t<t,+i+L/r, and equation (26), after
the factor zo=r (1—e~%/°) is replaced by «x/c, applies on
the range t,+t-+ L <t=< o.

If both E and & are equal to zero, which is practically
equivalent to saying that the air is so still and cloudy and
damp that there can be no evaporation, we can replace ¢
by any value of ¢’ whatever; and equation (33) then re-
duces to equation (5) as it should.

If t<L/v equations (30) and (31) will not apply on the
ranges stated, since in this case z has receded to a value
equal to or less than x/c. Equations for this situation will
not be obtained. Their derivation, if desired, is per-
fectly straight-forward, following the reasoning used in
getting equation (33).

It can be shown that the derivatives of equations (32)
and (33) with respect to ¢ are everywhere negative; that is,
the flood crest cannot be given by these equations. If we
differentiate equation (31) with respect to ¢ we get

spfarm¥] 11— | w1 rte]
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If we set this derivative equal to zero, t is replaced by ¢,
the time of the flood crest. Solving for {., we get

tczc[log r(e"’“ + etile — 1)_ Ee":]——log[r—— E’]]

The maximum discharge, ., is obtained by using the same
device as in deriving equation (29); and from equation (31)
we get in this way

Yo=WrlL— (t.— to)v]— WE(t,— to)o. (35)

When E=0 equation (34) reduces to equation (7), and
equation (35) to equation (8), as they should. _

The question anses whether equation (30) furnishes,
in certaln cases, the maximum discharge. To consider
this take equation (C-2). From this equation it is

(34)

evident z=0 when zoz}_ Ot E@')e"'*dt’. Equation (C-2)

is only applicable till the time f and since after the time
represented by the solution of this last equation for #’
equation (C-2) gives negative values for the run-off it is

clear that ¢ cannot possibly exceed the value obtained by
solving this equation. If E(’) is constant this equation
becomes

zo=E(e"*—1) or e”"=1+2—% whence #'=c¢ log <1+%,>-
Thus since equation (C-2) is not applicable after this time

neither is equation (30) which was based on equation
(C-2). The derivative of equation (30) is

%2 W'n,(e lofe — 1>e—t/c_ I’VED(I _ e-—}(t—to))

equate this to zero and solve: {,=¢ log[%,(e"'/c —1) + e“/c:]

But equation (30) cannot possibly hold after

t=t0+c log (1+30/E).
In Nature, it will never even hold up to this value.
Since zy=r(1—e*/¢) and f,=c log e"c we have

t=c log{e tofe [ 14-r/ E(l —e “°/°)]:|- That is, ¢, representing

the point where the derivative of equation (30) takes the
zero value equals this value up to which equation (30)
will never apply in Nature. Therefore equation (30)

-cannot have a maximum on the range for which it holds.

SECTION 3: DISCHARGE FROM ANY DRAINAGE AREA
CORRECTED FOR EVAPORATION

The equations of section 2, wherein the width of the
drainage area, and the rate of evaporation (or evapora-
tivity) were considered constant, serve as a simple illustra-
tion of, and an introduction to, the underlying principles
involved.in correcting the discharge for evaporation in
general. More general equations will now be developed in
which neither the width of the drainage area nor the rate
of evaporation (or evaporativity) is treated as constant.

The same mathematical restrictions are placed on
W(x), the function which represents the width of the
drainage area, as in the second paper. The following
mathematical restrictions are placed on the functions
E (t') and & (t’) which represent the rate of evaporation
and rate of evaporativity respectively:
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1. They are identically zero when t’<0; in other words
before the rain stops there is no evaporation.

2. They shall be single valued, except at points of
discontinuity where they shall be two-valued.

3. They shall be everywhere finite.

4. They may assume an unlimited number of zero
values, but may not assume any negative value.

5. They shall not have more than a finite number of
discontinuities on a finite range.

When equations (C-2) and (C-2f) were derived, no
explicit assumptions were made about the functions
E (#’) and & (’). Obviously these equations are valid if
the functions are continuous; but it should be noted that
they also hold when £ (') and & (') are subject merely
to the more general restrictions just stated.

Each of the restrictions listed is justified by the physical
nature of the problem. The fourth restriction may
require special comment since evaporation is sometimes
loosely spoken of as negative rainfall. To regard the
evaporation which may take place while rain is in progress
as negative rainfall is certainly logical. However, it does
not seem to be convenient to treat evaporation in this
way after the rain stops. Neither does it seem to be
altogether convenient to treat the occasional light shower
which may occur after the main heavy flood-causing rain
as negative evaporation. Further developments may
make such treatment desirable but for the present the
fourth restriction is imposed.

In the following developments the discontinuity which
may take place in the constant, ¢, during and after a rain
is ignored, just as it has been previously. It was explained
in the first paperthat the constant ¢ may be thought of as
consisting of two parts: one, ¢’, due to the fact that water
soaks into the soil and the other, ¢/, due to the fact that
water sometimes remains upon the soil® The constant
¢/’=0 when and only when the soil is saturated. The
constant ¢/=0 when and only when the soil is not satu-
rated and also the rate of rainfall is less than the infiltra-
tion rate. If the rate of rainfall exceed the infiltration
rate and the soil is not saturated then neither ¢’ nor ¢”’
is zero. Both ¢’ and ¢’/ are never simultaneously zero.
After an intense rain water may remain upon the soil for
some time after the rain stops even though the soil is
not saturated because the rate of rainfall exceeded the
infiltration rate. In this case the rate of evaporation is
independent of the depth of water remaining with the
soil until and only until there is no water remaining upon
the soil. At this instant there is a discontinuity in the
constant ¢. The behavior of the constant ¢ will be fully
discussed in the fifth paper of this series.

Consider first the case where the soil contains so much
water at the time the rain stops that the rate of evapora-
tion is independent of the amount which remains. The
rate of run-off from each infinitesimal strip, W(x)dx,
above the gaging station is given by equation (C-2).
By integrating this expression between the limits 0 and
L, making due allowance for the time it takes for water
to flow from where it fell as rain to the gaging station,
we have

_Yfp_ ' ~—x/v) v
y:fL Wx)e © (t ")l:zo—}f E(t’)e“dt’]«lx
0 cJo
L
=e Y "’[zoﬁ W(zx)e*/**dzx

' —zfv i
- f LlW(a:)e”“[ f ¢ /)E'(t’)e‘dt’]dx] (C-5)
0 C 0
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Equation (C-5) expresses the discharge as a function of
t, and holds on the range {,+L/rS{=< « with the addi-
tional restriction that z>x/fe. When E(')=0 equation
(C-5) becomes equation (B-5). For this reason we call
it the second generalized form of equation (5). When
both W(z) and E(’) are constants, equation (C-5)
reduces to equation (32). When t=t,+ L/», equation
(C-5) takes the form

L
Yy=e 1/ ”I:ZOJ; W(r)er'°*dx

L (L—=D)fv |
~ L Eﬂ’(x)e””’{ ﬁ E(t’)e"/‘dt’J-dx] (C=5a)

As stated in section 2, about equations (3) and (4),
equations (B-3) and (B—4) require no correction for
evaporation. Equations (B-6) and (B-9) do, however.
The flood crest occurs on the range for which these equa-
tions apply. Equation (C—6) below, now to be obtained,
holds on the range {,<t=<t,+ L/v with the two additional
restrictions that ¢ >L/v and z>>k/e. By reasoning similar
to that used in all previous cases when this range was
considered, it follows that for this range the discharge is

given by
L Ltz
y:I r(l—e c )W’(a‘-)d;z+

Zo 1, . ' —xfv) ,
ﬁ ¢ —W—zlv) [20"‘ l/cf( E(t')et /cdt;] W(r)dr
0

Since t'=t—1,, xo=(t—1)v, and zy=r(1—e~"*) the above
expression can be written in the form

L —tje ((Trers s tser
y=r[ f W)do—e ﬁ We)e™"dr -+
e'“"”“ﬁnW(x)ezlwdx]—

L e ”W@)J’"[ f Ho_r/vE(t")c"/Cdt’]dx. (C-6)
0 0

When £(')=0 equation (C-6) reduces to equation (B-6)
and therefore 1s called the second generalized form of
equation (6). When both W(r) and E£(’) are constants
equation (C-6) becomes equation (31). When i={,
equation (C-6) becomes eqguation (B—4a), and when
t=4,+L/v equation (C-6) bhecomes equation (C-5a).
When t=L/v equation (C—-6) takes the form

L (L )
y:{L IV(I)dI__e—L/ﬂf I'V(I)Gﬂﬂdx—l—
—too 0

1 L—tw
¢ it f w. xeszdz:l—
0

1 ’ L—ton Ljo—ty—zfv .
13 e f W ()& [ f E@)é "dt’]dx. (C-68)
0 0

c

For the case when the rate of evaporation is independent
of the water remaining with the soil, we still must con-
sider the range #,<t<{,+L/v with the two additional
restrictions that f,< L/ and z>«/c. To save space,
however, the equation which applies to this range, which
would be numbered (C-9), is not given; this equation
(C-9) can be obtained by substituting #» for L in equation
(C-6). Similar statements can be made for equation



142

(C-9) as were made for (C-6) when E(t')=0 and when
E@’) and W(z) are constants.

We proceed to find an expression for the time of the
maximum discharge, and for the maximum discharge
itself. By differentiating equation (C-6) with respect
to ¢, equating to zero, simplifying, and recalling that at
the time of the crest t=1,, we finally get

t.0—to to—lor
rete f w (x)ez/“dz—ke“/cﬁ E(t,—t,—zfv) W(z)dx
0

L
—r ﬁ W ()e™dz+

of¢ Lo —Lo0 o —lo—1[n ’
Ll 0" ’ W(:v)e”"’[ f bt E(t’)e”‘dt’:ldz. (©-7)
0

c

The solution of equation (C—7) for ¢, gives the time of the
crest. If the drainage area is of such a shape that the
crest may occur on the range £, <{=<1t,+ L/v where t<L/v
thefn e%uation (C-7) should be modified by substituting
to for L.

An expression for the maximum discharge is obtained by
resorting to the usual device of multiplying equation
(C-6) by e*°, then differentiating with respect to ¢, setting
dy/dt=0, and finally multiplying by ce”*/°.  We thus get

”°=’ﬂ_mW(">dx" ﬁ‘ﬁ_mW(wE(tc—to—x/v)dz. (C=8)

If the drainage area is such, and the rain so short, that
the crest may occur before the time ¢=L/v, then ¢, should
be substituted for L in the above equation.

The discharge equations thus far derived in this section,
and hence the expressions for the maximum discharge
and time of the flood crest obtained from them, are valid
only if z,>«/c, and then only till the time that z diminishes
to the value x/c. Discharge equations and expressions
for the maximum discharge and time of flood crest will
now be obtained for the case when z< «/e, that is to say,
when the depth of water remaining with the soil at the
time the rain stops is not great enough for the rate of
evaporation to be independent of it. When this is the
case equation (C-2f) gives the rate of rum-off for each
infinitesimal strip, W(x)dz above the gaging station. By
integrating the product, W(x)zdx, between the limits 0
and L, taking account of the time required for the water
to flow from where it fell as rain to the gaging station,
we get

I 1 ,_ _l tl—I/ﬂ ;e
y=2 fo W(z)e e ¢ ﬁ O gy, (C-50)

Equation (C-5f) heolds on the range t,+Ljv<t< o with
the restriction that z=<«/c. When &(')=0 equation
(C-5f) reduces to equation (B-5) and for this reason we
call it the third generalized form of equation (5). When
W(z) and &(’) are constants equation (C-5f) takes the
form of equation (26). When ¢—« equation (C-5f)
shows that y—0, which means that at a sufficiently long
time after the rain stops (with no additional rains of
course) the stream flow ceases. When t={,1-L/v equation
(C-5f) takes the form

(L
0

Lo\ (L=2)fer—1 f W wyar
Y=2 J; Wiz)e ) dz.

Consider now the range {,<t¢={,-+L/v with the further
conditions that ¢>L/v and z,S«/c. Under these condi-
tions and for this range the discharge is given by:

(C-5g)
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Y= J;OLTW(I)(I —e “’”"’)dz

[ W@es T 0y,
[}

Since t'=i—t, and z=v(—1%) and z=r(1—e~"*) the
above expression simplifies to

L L
yzf[f VV(z)dg;__e-:/cf W (x)e¥'e*dx
— (e—lo/c_ I)J’Iu W(I) e—%(l—-to—:/n)__}f.t—io—z/zvs(t,)dt,dx (C_Gf)

When &(@#’)=0 equation C-6f) reduces to equation
(B-6), and for this reason we call equation (C-6f) the
third generalized form of equation (6). When both
Wi(x) and &(@’) are constants equation (C-6f) becomes
equation (27). When {={,, equation (C—6f) takes the form
of equation (B—4a), and when t=t,+ L/v» equation (C—6f)
becomes equation (C-5g). When t=L/v equation (C-6f)
has the form

L L
—_ 7 —Ljco z/ce,
Y= l L_MW (x)dz—e L_MW(z)e dx

(et [T W gememete— [T s g,
(C-6g)

The last discharge equation to be obtained is one for the
range t,<t=<t+L/v where t<Lfv and z=xf/c. For this
range and these additional conditions equation (C-9f)
applies; to save space it is not given; it can be immediately
obtained from equation (C—6f) by substituting v for L.
Corresponding statements can be made about the form to
which equation ¢C-9f) simplifies when special assumptions
are made about W (z) and & (), as were made in regard to
equation (C-6f).

We next proceed to obtain expressions for the time of
the flood crest and for the maximum discharge. Dif-
ferentiate equation (C-6f) with respect to ¢, set this
derivative equal to zero, and simplify, recalling that when
dy/dt=0 the time of the flood crest is indicated by ¢, and
t.—f=1* On doing this we have:

1 L ", 1t —z/ o
eto/c.__lﬁ [V(z)er/cvdxzjo ’W'(;t)ez/a—;.fo ‘s L.
*o
2 (=205 g
+TC‘J; v-wv(z)ez/cv—;fo e wyat & (1*—2z/v)dz. (C-70)

The solution of equation (C-7f) for ¢* gives the time of the
flood crest. If the drainage area is shaped so that the
crest may be reached before the time L/», and if in this
case the rain is short enough, then #» should be substituted
for L in this equation.

An expression for the maximum discharge is obtained
by using the usual device of multiplying equation (C-6f)
by e'¢, differentiating the equation thus obtained with
respect to ¢, setting dy/dt=0 and finally multiplying by
ce~'¢,  On doing this we get

L
- ﬁ W @) dz—
9
DRSS [ ———

K

If the solution of equation (C-7f) for ¢* shows that the
time of the flood crest occurs before the time L/v, then
tv should be substituted for Z in equation (C-§f) to obtain
the maximum discharge,
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Before proceeding further, it will be useful to summmarize
briefly what has been accomplished thus far in the first
three papers of this series. Section I of the first paper and
section I of the present paper pertain to run-off equations.
All the remaining sections, excepting section 5 of the
second paper, pertain to discharge equations and conclu-
sions which can be drawn from them. Of the sections
dealing with discharge equations, the first three in the
second paper, and the second in the present paper, con-
sider quite special conditions; while they are instructive
and interesting, nevertheless they lack generality and need
not be considered further in this brief summary. The
second section of the first paper, the fourth section of the
second paper, and the present section are developed along
closely similar lines. Thus the second section of the first
paper derives the five discharge equations (3), (4), (5),
(6), and (9). Likewise the fourth section of the second
paper derives five discharge equations, bearing the same
numbers with the letter B prefixed. The only difference
between these two sets of equations is that in the former
the drainage area is considered to be rectangular, while in
the latter the drainage area may be of any shape encount-
tered in nature. These equations serve to express the
discharge from the time the rain begins till the time the
discharge has receded to the value it had at the beginning
of the rain. Two cases arise, one when the rain lasts long
enough for water which fell as rain in that part of the
drainage area most remote from the gage to flow to the
gage; the other, when the rain did not last this long. The
time required for water to flow from the most remote
portion of a drainage area to the gage is called the con-
centration time,; it has been expressed by L/v. The dura-
tion of the rain is expressed by ¢, Now regardless of
whether the duration of the rain exceeds the concentration
time or not, that is, whether {,==L/v, four equations are
necessary to express the discharge as a function of time
from the instant the rain begins till the stream flow has
receded to the value it had at the time the rain began.
(It is understood, of course, that in this theoretical treat-
ment no additional rains occur after the end of the single
one under consideration.) If the duration of the rain
exceeds the concentration time, the four equations required
are equations (3), (4), (6), and (5) in that order; if the
concentration time exceeds the duration of the rain the
four equations required are successively (3), (9), (6), and
(6). Ifit,>L/v, the ranges of the equations are—

equation (3) or (B-3) 0st<L/v.
equation (4) or (B—4) Livst=i,.
equation (6) or (B—6) to<t<t,+L/v.

equation (5) or (B-5) ¢+ L/vSi< .
If {,<<L/v, the ranges of the equations are

equation (3) or (B-3) 0ty
equation (9) or (B-9) to<t=<Lfv.
equation (6) or (B—6) Livst<t,+L/v.

equation (5) or (B-5) t,+L/r=i=s ».

Throughout the second section of the first paper, the
fourth section of the second paper, and the present section,
much care has been taken to show that at the limits of
the ranges of these equations the discharge curve, as a
whole, is continuous; in the second article it was pointed
out that the rate of discharge curve also is continuous at
these points, but that the discharge tendency curve is
discontinuous. From the physical nature of the problem,
the discharge curve would naturally be expected to be
everywhere continuous, .

In the present section, discharge equations have been
derived in which corrections are made for the evaporation
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which takes place after the rain stops. If the rate of
evaporation is always dependent on the water remaining
with the soil, as it actually is after many rains, then the
treatment of evaporation is rather simple and the dis~
charge curve is expressed by the four equations (B-3),
(B—4), (C-6f) and (C-5f) in that order if the duration of
the rain exceeds the concentration time, and successively
(B-3), (C-91), (C-6f), and (C-5f) if the concentration time
exceeds the duration of the rain. On the other hand if the
rate of evaporation is always independent of the amount
of water that remains with the soil, the discharge curve is
expressed by the four equations (B-3), (B—4), (C-6), and
(C-5) in that order if #,>>L/v, and successively by (B-3),
(C-9), (C-6), and (C-5) when t,< L/v; but it is doubtful
if this case ever occurs in nature. It would seem that the
closest approach to such a condition would be when rain
falls on ground that is deeply frozen and remains frozen
until all surface water from the rain has run off. Actually
when the rain lasts so long that z, exceeds x/c and makes
the rate of evaporation independent of the amount which
remains, the rate of evaporation remains independent
of this amount only so long as z exceeds x/c. Kor this
reason more than four equations are required to express

the discharge curve. If 7 represents the time measured
from the instant the rain stops, at which the rate of run-off
recedes to the value «/c, then for any small parcel of ground
the rate of run-off is given by equation (C-2) during the
interval 0=<t'<t, and by equation (C-2f) after having
replaced z, by «/¢ during the interval {<t'< «. Whenever
the rain lasts long enough to make z, exceed «/c, six equa-
tions instead of four are necessary to represent the dis-
charge curve.

The additional equations necessary for a complete
treatment will not be derived; only an explanation of
how they may be obtained, and the ranges of their ap-
plicability, are given. All the discharge equations in the
three sections here summarized can be placed in one of
three classes. One class comprises all those equations
derived by integrating equation (1) over the drainage
aréa, with, of course, consideration of the time required
for the water to flow from where it fell as rain to the gage.
In the second class are placed all those equations derived
by integrating any one of the run-off equations (2), (C-2),
or (C-2f) over the drainage area. To obtain any dis-
charge equation which belongs to either of these classes,
only one integration with respect to z is required. In
the third class are placed those equations for which two
integrations with respect to z were necessary. Equation
(1) must be integrated over the proper portion of the
drainage area, and one of the three run-off equations (2),
(C-2), or (C-2f) must be integrated over the remainder
of the drainage area. The flood crest always occurs on
the range in which a discharge equation of this third class
is applicable.

When z 1s expressed for a certain interval by equation
(C-2), and for a later interval by equation (C-2f) after z,
is replaced by x/e, two cases arise, one when {>L/v and
the other when t<L/s. These two cases are somewhat
analagous to those which arise according as the concen-
tration time exceeds or is less than the duration of the
rain. When > L/v it will never be necessary to perform
more than two integrations with respect to z to. obtain
an expression for the discharge. One integration must
be made on equation (C-2) over the proper portion of
the drainage area and the other on equation (C-2f) over
the remainder, in each case taking account of the time

required for water travel, When ¢<{L/v it is necessary
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over part of the range to perform three integrations with
respect to z, one on equation (1), another on equation
(C—2) and a third on equation (C-2f), each over the
proper portion of the drainage area with due regard for
the time required for water travel.

When ¢ >L/» equations (9) and (6) require no change;
equation (C—5) holds only on the range t,+L/v<t<1t,+¢;
a new equation, not here derived, applies on the range ¢,
tstst,+t+L/v; and equation (C-5f), after z, has been
replaced by x/c, applies on the range fy+t+L/rSt< ».

When ¢>L/» equation (B-6) holds only on the range
thb<t<t+iy; equation (B—9) holds only on the range
l,<t<t; a new equation requiring three integrations with
respect to r, applies on the range #+t<t<t,+L/o;
another new equation applies on the range to-+L/v=<t=t,
+L/v4t; and finally equation (C-5f), after z, has been
replaced by «/c, applies on the range {+t+ L=<t .

Consider now the expressions for the maximum dis-
charge. It can be shown that for each value of ¢ the
values of ¥ given by equations (C—6) and (C-6f) respec-
tively, are less than the corresponding value of y given by
equation (B—6). Hence evaporation reduces the dis-
charge, and it is obvious that this should be so. It readily
follows that the maximum discharge as given by equations
(C-8) and (C-8f), respectively, is less than the maximum
discharge given by equation (B-8). -

It was explained 1n the second article that equation
(B-8) has a physical interpretation. Equation (C-8) has
a similar interpretation. This physical explanation can
be most simply stated when the rate of evaporation,
E(#), is constant; in this case the maximum discharge can
be described as equal to the discharge in a steady state
from that portion of the drainage area situated above the
equal water travel line which corresponds to the distance
water travels from the time the rain stops till the time of
the flood crest, diminished by the volume of rate of evapor-
ation from the remainder of the drainage area at the time
of the crest. It is clear, in the light of the explanation
previously given for equation (B-8), why the maximum
discharge has this value. If the rate of evaporation is not
constant, then the maximum discharge is equal to the dis-
charge in a steady state from that portion of the drainage
ares situated above the equal water travel line which
corresponds to the distance water travels from the time
the rain stops till the time of the flood crest, diminished
by the volume of rate of evaporation obtained by inte-
grating the rate of evaporation over the remainder of the
drainage area at the time of the crest diminished by the
time required for water to flow to the gage from where it
fell as rain.

In equation (C-8f), which gives an expression for the
maximum discharge when the rate of evaporation is de-
pendent on the amount of water remaining with the soil,
we can replace r(1—e%) by 2z, and then replace

Yo R D di'

et "f ) THEE by z(t*—=z/v). Then cz(t*—z/v)
can be replaced by ¢(t*—z/v), which function represents
the depth of water remaining with the soil. Finally

%4, (t*—2x/v)E(*—zfv) = E(t*=2/v). Hence equation

(C-8f) admits of exactly the same physical explanation as
equation (C-8).

The final topic to be considered is the effect of evapora-
tion on the time of the flood crest. This effect is not at
all as obvious as the effect of evaporation on the maxi-
mum discharge. It is not obvious whether the effect of
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evaporation is to advance or to retard the time of the
flood crest. :

CThe difference between equation (B—6) and equation
(C-6) is

t'ng f—zfv
1/e f W(.r)e%“'-w[ f ' E(t’)e“”dt’:ldz

Since all functions in the integrand are positive, this
expression is an increasing function of ¢. Hence we
conclude that the effect of evaporation is to advance the
time of the crest; that is to say, the crest comes sooner
when evaporation takes place than it does when evapora-
tion does not occur after the rain stops. However, from
the form of equation (C-7) it is evident that evaporation
does not affect the time of the flood crest by a large amount.
The difference between equation (B—6) and (C—6f) is:

N L 1, Y U~z
T(l——e""/f)f Wi(x)e " ""”(1—«3 xJo E“""")d;c.
]

This is an increasing function of ¢; hence whether the rate
of evaporation is dependent or independent of the amount
of water that remains with the soil, the effect of evapora-
tion is to advance the time of the crest.

SECTION 4: THE DIURNAL VARIATION OF THE RATE OF
RUN-OFF

It is well known that in moderately dry weather a
rather pronounced diurnal variation is often observed
in the discharge of very small streams. This diurnal
variation obviously cannot be observed in very dry
weather, since small streams then become dry, although
undoubtedly the cause which brings about the variation
is still present; the variation in streamflow may be present
also when the streams are flowing at more than average
stages (that is, in moderately wet weather), but if so its
amplitude is not so great and hence the phenomenon is
not easily observed, although again the cause undoubtedly
is present. However, no diurnal variation is observed
in the larger streams; and it is the object of this section
to explain why this variation is absent in the larger
streams, and to show that the effect of this factor can be
neglected in forecasting the time and magnitude of flood
crests.

It is evident that there must be a diurnal variation in
the rate of evaporativity; however, it is clear from equa-
tion (C-2f), that regardless of how great the amplitude.
E (#') may be in the rate of evaporativity, there can be
no variation whatever in the rate of run-off, z. More-
over, from equation (C-2) it is evident that no variation
in the rate of evaporation, E (), however great, can cause
any variation in the rate of run-off, z. Since a diurnal
variation is actually observed in the rate of run-off it is
obvious then that equations (C-2) and (C-2f) do not rep-
resent all the conditions which occur in Nature.

It seems plausible that in the case of soils not covered
with vegetation, the only forces acting on the water in the
soil are gravity, the molecular attraction of the soil
particles for the water molecules, and the vapor tension
due to air circulating between the soil particles. Under
this condition it seems that the equations given in section
1 represent the rate of run-off with a reasonable degree of
accuracy. When plants are present, however, there is
an additional force to be considered. The transpiration
of plants seems to be equivalent to a force on the soil
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water opposite to that of gravity. This influence causes
the diurnal surge or variation in the rate of run-off.

Take the usual expression for the amount of water
remaining with the soil at time ¢/,

Ag(t') =AR—F(ty)— A L * et — fo AR,
and in accordance with the second fundamental assump-
tion replace E(t’) by %¢(t')a(t’). If-9(t’) represents the
magnitude of the force acting opposite to gravity which

transpiration causes at time t’, then the third funda-
mental assumption can be expressed as

_ke(®)
02—0—0;5—;

where k is a constant of proportionality, whence we have
Ac .., : LA VA , e
() =AR—F(ty)—A| zdt/— | T-cz0(t’) &t )dt’;
k o kx

then by differentiating we have

Ac. . dz , Ac d .., Ac.
Tco(t )d—;+702(70(t )= —Az—ak—:a(t (),
or on simplifying,
de  doCt)) .,  kdt! 1. .
2 Fe) 4= ey S Wt

On integrating this last expression between the limits 0
and ¢’ and then solving for = we get

S LI P, P

60) ~Ji[atm+rs0]e

2=205py° (36)

-axis, mile-inches per fHour
= N G G
] § § § 3
{ [ T I l

4
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It should be emphasized that z, in equation (36) is not
given by r(1—e~%F) as it has been in all previous equa-

tions, but instead zo=%r(1_e—to/c)_

The function 6(t’) is periodic in ordinary weather with
a period of 1 day. As this function increases, the rate of
run-off decreases, and vice versa. The rate of evapora-
tivitff &(t') may be, and usually is, periodic also, but its
oscillations do not produce any variation in the rate of
run-off.

To obtain an expression for the discharge, equation (36)
is integrated over the drainage area with due regard to the
time required for water to flow from where it fell as rain
to the gage. This is done by replacing ¢’ by ¢’ —z/v and
integrating with respect to z between the proper limits.
It is evident that the exponential in equation (36) does
not change rapidly with a change in t’. Therefore if
6(t'—x,/v) corresponds to (or, rather, equals) 0(t' —x,/v),
the times ' —u,/v and ¢’ —x,/v differing by 1 day, then on
integrating equation (36) between the limits z, and z;, the
periodicity disappears. As the velocity of the water is
not very great when streams are low, the distance which
water will travel in 1 day is not relatively great, and
therefore the stream at the outlet of a drainage area of
moderate length does not display a noticeable diurnal
variation in its discharge. Moreover the other irregu-
larities of the drainage area tend to mask this phenomenon.

SECTION 5! HYDROGRAPHS OF DISCHARGE

Three hydrographs of hypothetical conditions are here
computed and shown in the figures. Each hydrograph
represents the discharge with evaporation neglected as
well as with evaporation considered. Obviously the lower
branch of each curve represents the discharge corrected
for evaporation. :

| ! y 1 \ 1 4

Q

50

o

0 20 Jo 40

o0 70 80 90 100 o 20

t-axis hours
FIGURE 10,



146

700

§ § 8

S, mile-inches per hour
LY
3

y-d)(l

100

(27

§ 8§ 3

x/is. mile-inches per hour
N
8

y-a

/00

MONTHLY WEATHER REVIEW

Aprin 1937

|

20 30 4o 50 60 70
f-axris. hours

FIGURE 11,

%

i 1 ! | i |

20

/o

20 J0 40 50 60 70
7-axis, hours

FIGURE 12.

120



APRiL 1937

Figure 103 shows the effect of evaporation on the dis-
charge for a relatively short rain. For this figure the
values of the constants are as follows: f{,—=15 hours,
L=300 miles, W=40 miles, r==0.20 inch per hour;
.E=0.015 inch per hour; »==4 miles per hour; ¢=20
hours; =20 hours and &==0.015 inch per hour. The
values of K and & are very high. Such high values are
purposely assumed so as to form a conclusion of the maxi-
mum effect evaporation may have in: diminishing the height
of the crest. For this same reason W is purposely made
large so that the time after the rain stops may be long
during which evaporation may take place. The maximum
discharge with evaporation neglected is 463.4 mile-inches
per hour and 440.1 when corrected for evaporation. - This
18 an extreme case and the effect of evaporation is only
about 5 percent. In this case the effect of evaporation
on the time of the crest is extremely minute.

Figure 11 was constructed from different values of the

3 The figures are numbered consecutively with those in papers I and II.
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constants. In this case the values were purposely chosen
to show the maximum effect evaporation may have on the
time of the crest. For this figure {,—=45 hours, L=180
miles; W=40 miles, r=0.15 inch per hour, E=0.015
inch per hour, »=4 miles per hour; ¢=40 hours. It is
further assumed that #>{,+L/v. When evaporation is
neglected, the time of the crest is 65 hours 38 minutes
from the beginning of the rain, and is 64 hours 9 minutes
when evaporation is considered.

Figure 12 was constructed to show the effect of evapora-
tion on discharge when there is no surface run-off. Here
¢’’=0 and ¢'=¢=>500 hours, {,— 60 hours, L=240 miles,
W=200 miles, »=0.05 inches per hour, §=0.005 inches
per hour, 9=4 miles per hour. The effect of evaporation
in this case is small also. Here the width of the drainage
area has purposely been chosen 5 times as large as in the
two earlier cases because of the scale in the figures.

PRELIMINARY REPORT ON A STUDY OF ATMOSPHERIC CHLORIDES

By Woobrow C. Jacoss

[University of California, Scripps Institution of Oceanography, La Jolla, Calif., August 1936)

An investigation of the salt ' content of the air was
begun at the Scripps Institution in January 1936. The
primary purpose of the investigation, at the time it was
initiated, was to attempt to prove that the formation of
shallow haze or fog (salt haze), peculiar to coastal regions,
is due to the presence of comparatively large salt particles
or droplets of concentrated sea water suspended in the air.
However, a later survey of the available literature in the
field of colloid meteorology revealed that such an investi-
gation might serve to fill a gap in our present knowledge
of the sources of condensation nuclei. It was felt that a
knowledge of the probable sizes of the particles and their
effectiveness as condensation nuclei together with a deter-
mination of the salt content of the air would make deduc-
tions possible regarding the importance of the sea as a
source of atmospheric nuclei. '

CONDENSATION NUCLEI AND ATMOSPHERIC NUCLEATION

Since the experiments of John Aitken and C. T. R.
Wilson, it has been known that condensation of water
vapor will not occur at ordinary humidities in air which
does not contain colloid particles to act as condensation
nuclei. Lord Kelvin (1) explained this as an effect of
the increased vapor pressure over a convex surface, which
would render condensation impossible-in the absence of
# nucleus. Later experiments, however, indicate that-it
is- prebably a question largely of true metastability.
Studies of the nature and effects of these nuclei have been
made by numerous investigators, the results of whose
researches mdy be found in many published papers; yet,
very little is known eoncerning the origin of:those sus-
pensoids which are active in the atmospheric condensation
processes. ' ' »

- Dust particles were at first considered to be the active
nuclei; but subsequent investigations by Wigand (2),
Boylan (3), Owens (4) and others have proved beyond a
doubt that these neutral particles will act only at enor-
mous degrees of supersaturation. Aggregates of the air
molecules and complex water moleculés: may also be
eliminated from further considerstion on the same grounds.
Molecular ions have ‘been considered, but C. T. R. Wilson
proved that they were effective only under the extreme

i The term “sa]t"', herein used, is not limited to NaCl.

conditions imposed within his cloud chamber. He found
that to produce condensation on negative ions a relative
humidity of 420 percent is required, on positive ions 790
percent. Appreciable supersaturation is necessary before
condensation will take place on even those large, slow-
moving, charged particles, the Langevin ions; therefore,
it seems as though we may safely disregard these, too, as
being effective in an atmosphere where such a state seldom
exists.  In fact, as stated by Willett (5):

The whole trend at present, in the light of increasing observational

data on the conditions actually prevailing in clouds where condensa-
tion is taking place, is to postulate an ever smaller degree of super-
saturation in these processes. )
It has been’ observed many times that fogs and clouds
frequently form at relative humidities well below 160 per-
cent, which condition seems to be the rule in some localities
rather than the exception. On the other hand, even very
slight degrees of supersaturation are seldom found in fogs
and clouds and then, usually, only under extreme con-
ditions ef cooling: That this condition is more frequent
at high levels, say in cirrus clouds, or in cumulo nimbus
clouds, may be true. " Evidence at the present time points
to the importance of the hygroscopic aerosol in the
condensation process: It is'well known that the vapor
pressure is lower over a solution or a hygroscopic substance
than over a plane water surface, hence, such particles in
the atmosphere, coupled with a large curvature, constitute
extremely effective nuclei for condensation. :

As to the origin of these particles, there is considerable
difference of opinion. According to Bennett (6), there
are two obvious possibilities-—the sea and chimneys. ' It
would be expected that the sea would contribute most of
those nuclei effective over and near the sea, while those
resulting from combustion are no doubt of extreme
importance near such sources of pollution. However,
there is no evidence indicating that there has been any
great change, except locally, in the balance of nature in
this respect since the rise of industrialism. Therefore,
Kéhler (7), Simpson (8), Melander (9), Ludeling (10) and
others believe that the sea is the primary source; a reason-
able conclusion when it is considered that five-sevenths ‘of
the earth’s surface is water. In support of such a theory,
Kohler from his analyses of rains, snows, and rime, found
an almost constant chloride content even at great distances



